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Self-Collision Detection in Spatial
Closed Chains
A novel methodology for detecting self-collisions in spatial closed kinematic chains is
presented. In general these chains generate complex three dimensional motions in which
their own links will collide with each other (i.e., a self-collision) without effective motion
planning. The self-collision detection is accomplished via a novel algorithm for defini-
tively detecting collisions of right circular, cylindrically shaped, rigid bodies moving in
three dimensions. The algorithm uses line geometry and dual number algebra to exploit
the geometry of right circular cylindrical objects to facilitate the detection of collisions.
In the first stage of the algorithm, cylindrically shaped rigid bodies are modeled by
infinite length right circular cylinders. Sufficient and necessary conditions are then used
to determine if a pair of infinite length cylinders collide. If the actual finite length rigid
bodies collide, then it is necessary that their associate infinite length cylinder models
collide, and we proceed to the next stage of the algorithm where the bodies are modeled
with finite length cylinders and a definitive necessary and sufficient collision detection
algorithm is employed. The result is an efficient approach of detecting collisions of
cylindrically shaped bodies moving in three dimensions that has applications in spatial
mechanism design and motion planning. A case study examining a spatial 4C mechanism
for self-collisions is included. �DOI: 10.1115/1.2965363�
ntroduction

Motivation. The efficient synthesis of and motion planning for
patial closed chains, such as the spatial 4C mechanism shown in
ig. 1, requires the detection of self-collisions. Unfortunately, the
urrent state of the art collision detection techniques are insuffi-
ient for these purposes. Hence, we propose a new modeling and
nalysis technique for definitive testing of self-collisions in spatial
losed kinematic chains.

The methodology presented here enables the user to model the
inks of the system using right circular cylinders and determine at
he synthesis stage of the design, without defining detailed link
eometry or building a virtual prototype, if any self-collisions
ccured in the desired motion. Cylinders have been used in pre-
ious works to model systems but not with the same modeling
echnique or mathematical approach presented here. In a related
ork, Merlet and Daney �1� presents an efficient set of collision

onditions, implemented using interval analysis, for a 6DOF
ough platform. In Corngold �2� infinite cylinders are used to
odel a nuclear reactor particle’s possible collision with a con-

ainment field. Chang et al. �3� used finite cylinders capped with
emispheres and spheres to model a simple system. Another case
f using cylinders to model a system is found in the medical
esearch field �4� for protein chain packing. It models the chains
sing cylinders and tests the protein pairs for collisions. Cylinders
re also frequently used in computer graphic renderings and in
ideo games for quick collision detection. These systems are often
implified to two dimensional cases for quick calculations �5�.

An advantage to using cylinders to model the geometry is that
hey can be represented as lines in space with an associated radius,
nd the distance between them can be definitively calculated.
sombor–Murray �6� presented the visualization of the shortest
istance between two lines in space. His constructive geometry
nd algebraic solutions to the problem motivated the work pre-
ented here. Another unique aspect of the methodology presented
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here is the use of dual vector algebra to quickly and accurately
perform the first level of testing. Other researches have used
screws to describe just the motion �7–9� of a system or to generate
the model �10� of the system, not test for collisions.

This paper proceeds as follows. First, the distance calculations
between infinite length cylinders, then finite length cylinders, are
presented. The necessary kinematic analyses of the two degree of
freedom spatial 4C mechanism are reviewed. Next, utilizing the
distance calculations and the results of the spatial 4C analyses, we
determine if a collision occurs for a spatial 4C mechanism. Fi-
nally, a case study for the self-collision detection of a spatial 4C
mechanism is presented.

Previous Works. In the state of the art for collision detection,
there already exist a great number of techniques and software
packages. They vary greatly in their modeling techniques, compu-
tational method, and thoroughness of testing. Here, we comment
on the most pertinent packages, but a more thorough review may
be found in Ketchel �11�.

Currently, the most commonly used method for collision detec-
tion between cylinders is the Gilbert, Johnson, and Keerthi �GJK�
�12� algorithm, which uses an iterative method for computing the
distance between the convex objects. The proximity query pack-
age �PQP� �13� creates a hierarchy of rectangle swept spheres
�RSS�, volumes covered by a sphere, whose center is swept over a
3D rectangle. It uses a specialized algorithm to improve the effi-
ciency and robustness of the distance calculations. Distance cal-
culations are performed between the RSSs on the hierarchal tree.
These general methods are computationally intensive when com-
pared to the algorithm presented here. SOLID �13� computes the
distance between any convex quadrics �e.g., cylinders�. It uses
two algorithms for its collision detection methods. First, it creates
a bounded hierarchal volume composed of axis-aligned bounding
boxes �AABBs�. Second, it computes the distance between the
two convex polytypes using the Minkowski difference and convex
optimization techniques.

Collision Detection
This section presents a complete description of the two levels of
testing for self-collisions. The first uses dual vector algebra to test
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or collisions between infinite length right circular cylinders. The
econd level definitively tests for all the possible interactions of
wo finite length right circular cylinders.

Infinite Cylinder Testing. Initially, each object is modeled by a
ylinder of infinite length and finite radius. Infinite cylinders are
imple models to check for collisions since they can be repre-
ented as a line in space with a radius. The shortest distance be-
ween two lines in space is along their common normal line N. An
dvantage of using cylinders is that their common normal line has
finite line segment between the two cylinders, and by comparing

he two cylinder’s radii to the length of that line segment, possible
ollisions can be detected. If the distance between the two cylin-
ers is less than the sum of their two radii, then the infinite cyl-
nders have collided. Hence, if the actual finite cylindrical objects
ave collided, it is necessary that the minimum distance between
heir associated infinite cylinders be less than the sum of their
adii.

The major axis of an infinite cylinder is a line. Here, we use
ormalized Plücker coordinates and dual vectors to represent
hese lines in space. Normalized Plücker coordinates define a line
y its unit directional vector and moment. Moreover, when con-
enient, we employ dual vector algebra to operate on lines. The
lücker coordinates of a line can be generated from two points on

he line or from a point and a direction vector �see Fig. 2�. For
xample, line S1 can be defined by points c and f or point c and
nit direction vector sn �see Eqs. �1� and �2�� where the subscript
denotes that the vector has been normalized.

S1 = � f − c

�f − c�
,c �

f − c

�f − c�� = �sn,c � sn� �1�

Fig. 1 A spatial 4C mechanism
Fig. 2 Infinite cylinder notation
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S2 = � g − d

�g − d�
,d �

g − d

�g − d�� = �wn,d � wn� �2�

We use the dual vector representation of the lines and dual
vector algebra �14,15� where �2=0.

Ŝ1 = �sn,c � sn� = a + �a0 �3�

Ŝ2 = �wn,d � wn� = b + �b0 �4�
In the line dot product,

Ŝ1 · Ŝ2 = �a,a0� · �b,b0� = cos � − �d sin � = cos �̂ �5�
In the line cross product,

Ŝ1 � Ŝ2 = �a,a0� � �b,b0� = �sin � + �d cos ��N̂ = sin �̂N̂ �6�

The above expressions are useful for calculating the distance d
and the angle � between two lines. The resultant dual number of
the dot product of two dual vectors yields the angle and the dis-
tance between the two lines as long as they are not parallel to each
other �see Eq. �5��. If d sin ��0, then the lines do not intersect
�d�0� and are not parallel �sin ��0�. If d sin �=0 and cos �
�1, then the lines intersect �d=0� and are not parallel. If the cos �
term of the dot product is equal to 1, then the lines are parallel and
the resultant dual vector of the cross product will have its real
component equal to 0. The cross product’s dual component
�d cos �� will equal 0 when the lines are identical. If d cos ��0,
then the distance d can be calculated. This is an efficient method
of determining the distance between the two infinite cylinders and
if a possible collision has occurred. If the resulting distance is
greater than the sum of the two radii, then no collision is possible
regardless of the length of the finite cylinders. If the result is not
greater than the sum of the two radii, then a collision may have
occurred. If this necessary condition is satisfied, then additional
testing is required. A finite cylinder model is used in the next stage
of the collision detection algorithm to definitively determine if a
collision has occurred.

Finite Cylinder Testing. If a possible collision has been de-
tected by the infinite cylinder test, then further testing is required
to determine if a collision had occurred. The model is modified
from cylinders of infinite length to cylinders of finite length. This
changes the approach from testing lines to testing line segments.
However, the same idea applies that the shortest distance between
the cylinders is along their common normal, but the point where
the common normal intersects the cylinder’s axis now becomes
important. Figure 3 shows a detailed flow chart for finite cylinder
testing.

Parallel Testing. From the initial testing, the angle � and the
distance d between the infinite cylinders are known. The distance
between the cylinders was found to be less than the sum of their
radii. There are two general cases: Their associated line segments
overlap in some manner �collision� or there is no overlap �no
collision�. To determine if they overlap, we project the start and
end points of Cylinder 2 onto Cylinder 1’s axis �see Fig. 4�. The
line parameter t values for the start and end projections of Cylin-
der 2 are calculated and ordered. The t values of Cylinder 1 are 0
and 1. By inspecting the order of the t values, any overlap can be
found. If the t value order occur in pairs �1-2,3-4 or 3-4,1-2�, then
no overlap or collision occurs �see Fig. 4�.

Nonparallel Testing. We begin by determining where the com-
mon normal line intersects the axis of each cylinder. The axes S1
and S2 are described by their endpoints �c and d� and nonunit
direction vectors �s and w�, where �s� and �w� are equal to the
length of their corresponding cylinder �see Fig. 5�. The common
normal line N intersects the lines S1 and S2 at points p and q,
respectively. Parametric equations for points p and q of lines S1

and S2 are �15�
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p = c + t1s

q = d + t2w �7�
here

t1 =
��d − c� � w� · n

n · n

t2 =
��d − c� � s� · n

n · n

n = s � w

Next, for each cylinder we determine the test point along its
xis that is closest to the common normal line. These test points
re referred to as TP1 and TP2. Then we determine if common
ormal points p and q are on the segments, before the segments,
r after the segments. If t1�0, then p lies at the start of the
egment or earlier, so the start point of the cylinder is used as TP1.

Fig. 3 Flow chart:
f t1�1, then p lies at the end of the segment or further, and the
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end points of the cylinder are exchanged. This will result in t1
�0 so that the start point of the cylinder is used as TP1. If 0
� t1�1, then p lies on the line segment and p can be used as TP1.
The above procedure is repeated for Cylinder 2 to determine TP2.

From the determination of whether points p and q lie on or off
the cylinders, there are three possible cases to consider �see Fig.
6�. If 0� ti�1, where i=1,2, both p and q lie on the segments
and On-On testing is necessary. If either but not both p and q lie
on the segments, On testing is necessary. Additionally, if only one
cylinder is on, the testing requires that it is Cylinder 1. If Cylinder
2 is on, all Cylinder 1 and 2 data are exchanged. If neither p nor
q lie on the segments then Off testing is necessary. These cases
are summarized below and discussed in detail in Refs. �11� and
�21–23�.

Case 1: On-On Testing. If both points p and q lie on the finite
cylinders, then a collision has occurred and no further testing is
required.

Case 2: On Testing. This case is addressed by finding the clos-

ite cylinder testing
fin
est point along Cylinder 1’s axis to TP2 �see Fig. 7�. This point p1
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s the intersection of lines S1 and N1 �N1 is orthogonal to S1 and
asses through TP2�. Calculating p1 �see Eqs. �8�� yields t3, which
s used to determine if p1 lies on or off the cylinder. If the distance
rom TP2 to p1 is greater than the sum of the radii, then no colli-
ion is possible, and no further testing is required. Otherwise, the
oint TP2�, which is the closest point of Cylinder 2 to Cylinder 1’s
xis, must be found. TP2� is on the circular end of Cylinder 2 and

(a)

Fig. 4 Finite cylinder test:

Fig. 5 Finite cylinders notation
Fig. 6 Cylinder testing
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is found by determining the point on this circle nearest to Cylinder
2’s axis. The search returns t3�, TP2�, and p1, where p1 is the closest
point along Cylinder 1’s axis to TP2�. Calculating p1 �see Eqs.
�10�� yields t3�, which is used to determine if p1 lies on or off the
cylinder. If 0� t3��1, then p1 lies in Cylinder 1, and if the dis-
tance between TP2 and p1 is less than the radius of Cylinder 1, a
collision has occurred. If the distance is greater than the radius, no
collision can occur and further testing is not required. If t3� is
outside the range, the test point of Cylinder 1 is off the end of the
cylinder and End testing is required.

p1 = c + t3s �8�

s · p1 = s · TP2

TP2� = TP2 + r2�rot��cos � sin � 0�T

�rot� = �x y z� �9�

p1� = c + t3�s

s · p1� = s · TP2� �10�

Case 3: Off Testing. The distance from TP2 to S1 is found. If the
distance is greater than the sum of the radii, then no collision is
possible, since TP2 is the closest point on Cylinder 2 to Cylinder
1. If the distance is not greater than the sum of the radii, then on
testing must be performed �see Fig. 8�. Additionally, the other end
of Cylinder 2 must be similarly tested.

End Testing. End cylinder testing is necessary when the circular
ends of the cylinders may intersect �see Fig. 9�. It is possible for
the test points, when the projections are added, to project on or off

b)

allel projection and overlap
(

Fig. 7 On testing notation
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he cylinder. When this occurs it is necessary to check if the cyl-
nder ends intersect. The approach to test for collisions uses the
istance from the line �the intersection of the planes of the cylin-
er ends� to the test points. The first step is to find the equations of
he planes �1 and �2 that are orthogonal to each cylinder’s axis
nd that pass through their test points.

The parametric equation for the line of intersection N� of �1
nd �2 is then found. Next, the distance from TP1 to N� is set to
1 to obtain a quadratic in t4:

r1 = �N� − TP1� = �	x

y

z

 + t4n − TP1�

0 = t4
2�nx

2 + ny
2 + nz

2� + t4�2nx�x − TP1x� + 2ny�y − TP1y� + 2nz�z

− TP1z�� + ��x − TP1x�2 + �y − TP1y�2 + �z − TP1z�2 − r1
2� �11�

imilarly, t5 can be found by setting the distance from TP2 to N�
qual to r2:

0 = t5
2�nx

2 + ny
2 + nz

2� + t5�2nx�x − TP2x� + 2ny�y − TP2y� + 2nz�z

− TP2z�� + ��x − TP2x�2 + �y − TP2y�2 + �z − TP2z�2 − r2
2� �12�

f the quadratic yields complex roots, then the cylinder end circle
nd the line N� do not intersect, and no collision is possible.
epeated roots mean that the cylinder end circle is tangent to the

ine N�, and no collision has occurred. If both roots are real then a
ange is found for t4 and t5. Overlap testing similar to that dis-

Fig. 8 Off testing: projecting on
Fig. 9 End testing: cylinder end overlap
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cussed in the Parallel Testing section is conducted. If the t4 and t5
ranges overlap then a collision has occurred.

The Spatial 4c Mechanism
A spatial 4C robotic mechanism has four cylindrical joints, each

joint permitting relative rotation and translation along a line �see
Fig. 1�. The frame’s axes are color coded red, green, and blue to
correspond with the local XYZ axes. The link parameters that
define the mechanism are listed in Table 1, and the joint variables
are defined in Table 2.

The spatial 4C mechanism may be viewed as a combination of
two CC dyads. The driving CC dyad has four independent joint
variables, referred to as �, d1, �, and c1. The driven dyad also has
four independent joint variables, 	, d2, 
, and c2. When adjoined
by the coupler link, the two dyads form a closed chain spatial 4C
mechanism with two degrees of freedom. We chose � and d1 to be
the independent joint variables. A complete kinematic analysis of
the spatial 4C mechanism may be found in Refs. �16,17�.

The next sections contain a description of the mechanism and
the methodology for collision testing. They present the generation
of the infinite and finite cylinder data, calculation of the mecha-
nism’s maximum translational values, and the cylinder testing
logic that reduces the number of tests that must be performed.

Mechanism Collision Testing
Our implementation of the self-collision detection algorithm

presented here utilizes a set of via points that describe the desired
motion, the constant link parameters of the spatial 4C mechanism
��, �, , �, a, b, g, and h�, the radii of each link and collar, and
the height of each collar.

Part 1: Analyzing Mechanism

Mechanism Angles. The link parameter twist angles are tested
to verify that the mechanism can be assembled. If any twist is
larger than the sum of the other three, then the mechanism cannot
be assembled. Also the T values that are used to classify the
mechanism’s spherical image can also be inspected �18�:

T1 =  − � + � − �

T2 =  − � − � + �

T3 = � + � −  − �

T4 = 360 − � − � −  − �

Table 1 Common normal and link parameters of the 4C
mechanism

Link Dual angle Twist Length

Driving �̂ � a
Coupler �̂ � h
Driven �̂ � b

Fixed ̂  g

Table 2 Moving axes and joint variables of the 4C mechanism

Joint axis Dual angle Rotation Translation

Fixed �̂ � d1

Driving �̂ � c1

Coupler 
̂ 
 c2

Driven 	̂ 	 d2
SEPTEMBER 2008, Vol. 130 / 092305-5
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If any of these are zero then the mechanism is a special type
rashof and the mechanism folds �18�. Folding inherently results

n at least one self-collision.

Via Points. The set of via points contains the input values for �,
1, the number of incremental steps to the next via point, and
hich solution to use for �. From this given information, several

ests can be performed to see if the mechanism is unsatisfactory.
Each via point’s � value can be tested to make sure that it is

ithin the allowable motion range of the mechanism. The allow-
ble motion range can be calculated using the link twist angles of
he mechanism �18�. If any of the via point’s � values are not in
he allowable range, the motion is not acceptable. In addition,
ach via point’s d1 can be checked for a sign change or if it is less
han the sum of the link’s radii plus half the collar height. In
patial 4C mechanism design, often the common normal is used to
efine the portion of the link that connects the collar to its axis, as
one in the 4C mechanism design software packages SPADES �17�
nd VRSPATIAL �19�. If the sign of d1 changes or if it is less than
he sum, a collision will occur between the driving link’s collar
nd the fixed link’s common normal �20�. This same analysis can
e performed for each of the mechanism’s translational values �d2,
1, and c2�. Similarly, the � solution set can be inspected. � has
wo solution sets and the remaining calculations are based on only
ne of the sets for the mechanism to be acceptable. If the set
hanges, the mechanism changes circuits and/or moves through a
ingular configuration �20�.

Part 2: Infinite Cylinder Generation. The next step in testing
he mechanism for a possible collision is generating the Plücker
oordinates of its axes and collars at each incremental step with
espect to the fixed frame F. We assign right-handed frames to the
echanism that translate and rotate along and about the local X

nd Z axes only �see Fig. 1�.

Part 3: Determining Moving Axis Lengths. The links of a
patial 4C robotic mechanism can be modeled by 12 line seg-
ents. The four axes and four common normals form a closed

hain of eight segments defined by 12 points �see Fig. 10�. Each
f the four links is described by three points: one at the center of
he link’s collar, the elbow defined by the intersection of the link’s
ommon normal with its axis, and the end defined as the opposite
nd of its axis. The collars of the mechanism are the final four line
egments of the mechanism. Although each link’s collar is colin-
ar with the previous link’s axis, separate points are required for it
nd for the end of the moving axis.

We assume that each link axis is rigid and that its length will be
ized to accommodate the translations that it must support. Hence,

Fig. 10 4C mechanism point designation
t is necessary to find the maximum length of each link’s axis for
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the desired motion. We use linear interpolation of the � and d1 via
points to yield a discretized representation of the desired motion.
At each discrete step of the motion, we perform a kinematic
analysis of the mechanism and the minimum and maximum val-
ues of c1, d2, and c2 are determined. The minimum lengths are
checked for possible collisions by making sure that they are
greater than the sum of the link’s radii and half the collar height.
The maximum lengths are used to define the lengths of the finite
cylinders that are used to model the link axes for collision detec-
tion via finite cylinder testing.

Part 4: Finite Cylinder Generation. The next step in testing
the mechanism is generating the segment endpoints for each of the
possible collision segments saved and identified during the infinite
length cylinder testing. For each linear interpolation of � and d1,
the endpoints of any segment can be generated by using the above
kinematic analyses.

For each incremental step, the 12 points are calculated and the
12 line segments generated. The closed chain’s segments, skip-
ping the collars, are numbered 1–8 starting with the fixed link’s
axis, proceeding around the closed chain, and ending with the
fixed link’s common normal �see Table 3�. Following along the
same path, the collars are then numbered 9–12. This yields the set
of finite line segments for each incremental step that is then tested
to see if a collision has occurred.

Cylinder Testing Logic
At each incremental step every cylinder is tested for possible

collisions. First, the infinite cylinder test is used, and if necessary
the finite cylinder test is then performed. Since the speed of cal-
culation is important, we look to reduce the number of tests that
must be run for each incremental step. First, cylinders cannot
collide with themselves since they are rigid links. Moreover, test-
ing Cylinder 1 for a collision with Cylinder 5 is redundant to
checking Cylinder 5 to Cylinder 1. This greatly reduces the num-
ber of tests required. The number can be further reduced by ob-
serving the geometric structure of the mechanism. In a spatial 4C
robotic mechanism, it is not possible for a cylinder to collide with
its adjacent cylinders. This eliminates, for example, testing be-
tween Segments 1 and 2 and Segments 2 and 3. Additionally, the
calculated translational minimum/maxima can be used to elimi-
nate tests during the initial testing phase between the collars and
the axes that are too far away from each other. For example,
Segment 2 cannot collide with Segment 4 without first colliding
with collar Segment 10. Segment 2 collides with Segment 10 if
the distance c1 is less than the sum of the link’s radii plus half the
collar height. Segment 2 collides with Segment 4 if the distance c1
is less than the sum of both of the links’ radii. This reduces the
number of possible cylinder combinations in a spatial 4C robotic
mechanism to 26, see Table 4.

Furthermore, during the infinite cylinder testing phase of the

Table 3 Segment designations of the spatial 4C mechanism

Segment No. Start point Endpoint

1 Fixed elbow Fixed end
2 Driving collar Driving elbow
3 Driving elbow Driving end
4 Coupler collar Coupler elbow
5 Coupler elbow Coupler end
6 Driven collar Driven elbow
7 Driven elbow Driven end
8 Fixed collar Fixed elbow
9 Driving collar

10 Coupler collar
11 Driven collar
12 Fixed collar
analysis pair tests can be sped up and/or eliminated. The axis of
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he collar located at the origin of Frame 2 is identical to the
oving axis of the fixed link. This allows for the same Plücker

oordinates to be used for the distance calculation between infinite
ylinders involving the collar or the moving axis. For example,
egments 1 and 9 have the same Plücker coordinates. Note that
or infinite cylinder generation, the axis of the collar located at the
rigin of Frame 2 is identical to the moving axis of the fixed link.
he same is true for Segments 3 and 10, 5 and 11, and 7 and 12.

Case Studies

Two Hit Case. To demonstrate the methodology presented, we
se the spatial 4C mechanism described in Table 5. The mecha-
ism’s fixed link is gray, the driving link green, the driven link red
nd the coupler link blue �see Figs. 11 and 12�. Each link’s com-
on normal and moving axis were assigned a radius of 5 units.
ach axis’s collar is given a radius of 20 and a total height, cen-

ered at the collar point, of 40 units.
A set of via points �see Table 6� was then entered for the
echanism, and some initial testing was performed. The allow-

ble range of � was calculated, and it was determined that the
nput link is capable of full rotation. After calculating the allow-
ble � range, each of the via points was tested to make sure that

Table 4 Segment collision testing pairs

Test
Segment No. Segment Nos.

1 4, 5, 6, 11
2 5, 6, 7, 11, 12
3 6, 7, 8, 12
4 7, 8, 9, 12
5 8, 9
6 9, 10
7 10
8 10, 11
9 11
10 12

Table 5 4C Case studies: link parameters

Dual angle Twist �deg� Length �unit�

�̂ �=10 a=100

�̂ �=45 b=70

̂ =65 g=90
�̂ �=55 h=80
Fig. 11 4C Case study 1: two hit collision
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they were within the same allowable range.
The next step is to begin incrementally moving the mechanism

through its desired motion. At each step, the first level of collision
testing is performed using infinite length cylinders. If a possible
collision is detected, the data that describe the mechanism’s posi-
tion and the segments that may have collided are written to a file.
For complete testing, not examining the translations, 6936 infinite
cases must be tested of which 939 resulted in possible collisions
�see Table 7� that required further testing. If the test for the colli-
sion between the collar and the fixed axis is tested at this level,
there would always be a collision since their axes intersect, by
definition, at a right angle. By examining the translational values
to determine if a collision occurs between collars and fixed axes,
infinite testing can be quickened. This removes eight tests at each
incremental step, four at least of which automatically result in
infinite cylinder collisions. Table 8 shows the difference in the
number of infinite �5304� and finite �321� tests required if the
translations are used instead of performing cylinder testing calcu-
lations. Of course both tests identify the same collisions. Also,

Fig. 12 4C Case study 2: one hit collision

Table 6 4C case study 1: motion input

� �deg� d1 �unit� Increments ��

30 90 50 �
10 120 40 �

−10 80 60 �
10 90 50 �

−20 80 NA �

Table 7 4C Case study 1: complete infinite cylinder testing

Seg. No. Seg. No. Infinite tests Infinite collisions Finite collisions

2 4 204 6 6
2 8 204 0 0
2 10 204 204 52
3 7 204 117 9
3 12 204 204 124
4 6 204 0 0
4 11 204 204 0
6 8 204 0 0
6 12 204 204 0
8 9 204 204 0

Other 24 pairs 4896 0 0
Total 6936 939 191
SEPTEMBER 2008, Vol. 130 / 092305-7

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



d
a
s
s
p

p
w
S
S
o
�
t
1
c
3
c

d
v
t
n
t
fi
a
a
n
w

T
t

C

0

Downloa
uring the incremental movement, the global translational minima
nd maxima of the mechanism are determined �see Table 9�. In-
pection of the mechanism’s translations shows that there were no
ign changes in any joint translations and that none of them ap-
roached zero.

Next the second level of testing using finite length cylinders is
erformed on each of the identified possible collisions. There
ere 191 collisions detected. The collisions occurred between
egments 3 and 7, Segments 3 and 12, Segments 2 and 4, and
egments 2 and 10. Figure 11 shows the mechanism when it is in
ne of the collision configurations, where �=−20.0 and d1=80.0
see Table 10� and four cylinder pairs collide. The collision be-
ween Segments 3 and 7, Segments 2 and 4, and Segments 2 and
0 are a two hit collision case where both test points of the finite
ylinders lie within the cylinders. The collision between Segments
and 12 is an end hit where the ends of the two finite cylinders

ollide.

One Hit Case. We now study the same mechanism when the
esired motion has been slightly altered by changing the second
ia point’s value of d1 from 120 to 100. This changes the transla-
ional outputs of d1 max to 100 and c1 max min to −64.8940. These
ew translational values shorten two of the link segments so that
he number of infinite collisions is still the same but the number of
nite collisions is now 118. Segments 2 and 4, Segments 2 and 10,
nd Segments 3 and 7 still collide �see Fig. 12�, but Segments 3
nd 7 collision is now a one hit case �see Table 11�. Also, with the
ew via points, Segment 3 is now shorter and no longer collides
ith Segment 12 for these input values.

able 8 4C Case study 1: partial infinite cylinder testing „using
ranslations…

Seg. No. Seg. No. Infinite tests Infinite collisions Finite collisions

2 4 0 0 6
2 8 0 0 0
2 10 0 0 52
3 7 204 117 9
3 12 204 204 124
4 6 0 0 0
4 11 0 0 0
6 8 0 0 0
6 12 0 0 0
8 9 0 0 0

Other 24 pairs 4896 0 0
Total 5304 321 191

Table 9 4C Case study 1: translation output

Translation Min �unit� Max �unit�

d1 80.000 120.000
c1 −80.1164 −5.6260
d2 −153.9905 −70.7963
c2 79.3920 113.3022

Table 10 4C Case study 1: results

ollision type Seg. No. Seg. No. � �deg� d1 �unit�

Two hit 3 7 −20.0 80.0
End hit 3 12 −20.0 80.0
Two hit 2 4 −20.0 80.0
Two hit 2 10 −20.0 80.0
92305-8 / Vol. 130, SEPTEMBER 2008
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Conclusions
A methodology for detecting self-collisions in spatial closed

kinematic chains has been proposed. It was shown that this self-
collision detection methodology is applicable to motion planning
of spatial closed chains. This algorithm uses line geometry and
dual number algebra to exploit the geometry of right circular cy-
lindrical objects. First, the rigid bodies are modeled with infinite
cylinders, and an efficient necessary condition for collision is
evaluated. If the necessary condition is not satisfied, the two bod-
ies do not collide. If the necessary condition is satisfied, a colli-
sion between the bodies may occur, and we proceed to the next
stage of the algorithm. In the second stage, the bodies are modeled
with finite cylinders and a definitive necessary and sufficient col-
lision detection algorithm is employed. The result is a straightfor-
ward and efficient means of detecting self-collisions of cylindri-
cally shaped bodies moving in three dimensions. This
methodology has applications in spatial mechanism design, espe-
cially in the kinematic synthesis and motion planning stages of
design. A case study examining a spatial 4C mechanism for self-
collisions was included.
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